1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
#include <string.h>
#ifndef _WIN32
#define MM_API __attribute__((visibility ("default")))
#else
#define MM_API __attribute__((dllexport))
#endif
#define BACKEND_NAME "core/be"
#include "midimonster.h"
#include "backend.h"
static struct {
size_t n;
backend* backends;
instance*** instances;
} registry = {
.n = 0
};
//the global channel store was converted from a naive list to a hashmap of lists for performance reasons
static struct {
//channelstore hash is set up for 256 buckets
size_t n[256];
channel** entry[256];
} channels = {
.n = {
0
}
};
static size_t channelstore_hash(instance* inst, uint64_t ident){
uint64_t repr = ((uint64_t) inst) ^ ident;
return (repr ^ (repr >> 8) ^ (repr >> 16) ^ (repr >> 24) ^ (repr >> 32)) & 0xFF;
}
int backends_handle(size_t nfds, managed_fd* fds){
size_t u, p, n;
int rv = 0;
managed_fd xchg;
for(u = 0; u < registry.n && !rv; u++){
n = 0;
for(p = 0; p < nfds; p++){
if(fds[p].backend == registry.backends + u){
xchg = fds[n];
fds[n] = fds[p];
fds[p] = xchg;
n++;
}
}
//handle if there is data ready or the backend has active instances for polling
if(n || registry.instances[u]){
DBGPF("Notifying backend %s of %" PRIsize_t " waiting FDs\n", registry.backends[u].name, n);
rv |= registry.backends[u].process(n, fds);
if(rv){
fprintf(stderr, "Backend %s failed to handle input\n", registry.backends[u].name);
}
}
}
return rv;
}
int backends_notify(size_t nev, channel** c, channel_value* v){
size_t u, p, n;
int rv = 0;
channel_value xval;
channel* xchnl = NULL;
for(u = 0; u < nev && !rv; u = n){
//sort for this instance
n = u + 1;
for(p = u + 1; p < nev; p++){
if(c[p]->instance == c[u]->instance){
xval = v[p];
xchnl = c[p];
v[p] = v[n];
c[p] = c[n];
v[n] = xval;
c[n] = xchnl;
n++;
}
}
//TODO eliminate duplicates
DBGPF("Calling handler for instance %s with %" PRIsize_t " events\n", c[u]->instance->name, n - u);
rv |= c[u]->instance->backend->handle(c[u]->instance, n - u, c + u, v + u);
}
return 0;
}
MM_API channel* mm_channel(instance* inst, uint64_t ident, uint8_t create){
size_t u, bucket = channelstore_hash(inst, ident);
for(u = 0; u < channels.n[bucket]; u++){
if(channels.entry[bucket][u]->instance == inst
&& channels.entry[bucket][u]->ident == ident){
DBGPF("Requested channel %" PRIu64 " on instance %s already exists, reusing (%" PRIsize_t " search steps)\n", ident, inst->name, u);
return channels.entry[bucket][u];
}
}
if(!create){
DBGPF("Requested unknown channel %" PRIu64 " on instance %s\n", ident, inst->name);
return NULL;
}
DBGPF("Creating previously unknown channel %" PRIu64 " on instance %s, bucket %" PRIsize_t "\n", ident, inst->name, bucket);
channels.entry[bucket] = realloc(channels.entry[bucket], (channels.n[bucket] + 1) * sizeof(channel*));
if(!channels.entry[bucket]){
fprintf(stderr, "Failed to allocate memory\n");
channels.n[bucket] = 0;
return NULL;
}
channels.entry[bucket][channels.n[bucket]] = calloc(1, sizeof(channel));
if(!channels.entry[bucket][channels.n[bucket]]){
fprintf(stderr, "Failed to allocate memory\n");
return NULL;
}
channels.entry[bucket][channels.n[bucket]]->instance = inst;
channels.entry[bucket][channels.n[bucket]]->ident = ident;
return channels.entry[bucket][(channels.n[bucket]++)];
}
instance* mm_instance(backend* b){
size_t u = 0, n = 0;
for(u = 0; u < registry.n; u++){
if(registry.backends + u == b){
//count existing instances
for(n = 0; registry.instances[u] && registry.instances[u][n]; n++){
}
//extend
registry.instances[u] = realloc(registry.instances[u], (n + 2) * sizeof(instance*));
if(!registry.instances[u]){
fprintf(stderr, "Failed to allocate memory\n");
return NULL;
}
//sentinel
registry.instances[u][n + 1] = NULL;
registry.instances[u][n] = calloc(1, sizeof(instance));
if(!registry.instances[u][n]){
fprintf(stderr, "Failed to allocate memory\n");
}
registry.instances[u][n]->backend = b;
return registry.instances[u][n];
}
}
//this should never happen
return NULL;
}
MM_API instance* mm_instance_find(char* name, uint64_t ident){
size_t b = 0;
instance** iter = NULL;
for(b = 0; b < registry.n; b++){
if(!strcmp(registry.backends[b].name, name)){
for(iter = registry.instances[b]; iter && *iter; iter++){
if((*iter)->ident == ident){
return *iter;
}
}
}
}
return NULL;
}
MM_API int mm_backend_instances(char* name, size_t* ninst, instance*** inst){
size_t b = 0, i = 0;
if(!ninst || !inst){
return 1;
}
for(b = 0; b < registry.n; b++){
if(!strcmp(registry.backends[b].name, name)){
//count instances
for(i = 0; registry.instances[b] && registry.instances[b][i]; i++){
}
*ninst = i;
if(!i){
*inst = NULL;
return 0;
}
*inst = calloc(i, sizeof(instance*));
if(!*inst){
fprintf(stderr, "Failed to allocate memory\n");
return 1;
}
memcpy(*inst, registry.instances[b], i * sizeof(instance*));
return 0;
}
}
return 1;
}
backend* backend_match(char* name){
size_t u;
for(u = 0; u < registry.n; u++){
if(!strcmp(registry.backends[u].name, name)){
return registry.backends + u;
}
}
return NULL;
}
instance* instance_match(char* name){
size_t u;
instance** iter = NULL;
for(u = 0; u < registry.n; u++){
for(iter = registry.instances[u]; iter && *iter; iter++){
if(!strcmp(name, (*iter)->name)){
return *iter;
}
}
}
return NULL;
}
struct timeval backend_timeout(){
size_t u;
uint32_t res, secs = 1, msecs = 0;
for(u = 0; u < registry.n; u++){
//only call interval if backend has instances
if(registry.instances[u] && registry.backends[u].interval){
res = registry.backends[u].interval();
if((res / 1000) < secs){
DBGPF("Updating interval to %" PRIu32 " msecs by request from %s", res, registry.backends[u].name);
secs = res / 1000;
msecs = res % 1000;
}
else if(res / 1000 == secs && (res % 1000) < msecs){
DBGPF("Updating interval to %" PRIu32 " msecs by request from %s", res, registry.backends[u].name);
msecs = res % 1000;
}
}
}
struct timeval tv = {
secs,
msecs * 1000
};
return tv;
}
MM_API int mm_backend_register(backend b){
if(!backend_match(b.name)){
registry.backends = realloc(registry.backends, (registry.n + 1) * sizeof(backend));
registry.instances = realloc(registry.instances, (registry.n + 1) * sizeof(instance**));
if(!registry.backends || !registry.instances){
fprintf(stderr, "Failed to allocate memory\n");
registry.n = 0;
return 1;
}
registry.backends[registry.n] = b;
registry.instances[registry.n] = NULL;
registry.n++;
fprintf(stderr, "Registered backend %s\n", b.name);
return 0;
}
return 1;
}
int backends_start(){
int rv = 0, current;
instance** inst = NULL;
size_t n, u;
for(u = 0; u < registry.n; u++){
//skip backends without instances
if(!registry.instances[u]){
continue;
}
//fetch list of instances
if(mm_backend_instances(registry.backends[u].name, &n, &inst)){
fprintf(stderr, "Failed to fetch instance list for initialization of backend %s\n", registry.backends[u].name);
return 1;
}
//start the backend
current = registry.backends[u].start(n, inst);
if(current){
fprintf(stderr, "Failed to start backend %s\n", registry.backends[u].name);
}
//clean up
free(inst);
inst = NULL;
rv |= current;
}
return rv;
}
static void channels_free(){
size_t u, p;
for(u = 0; u < sizeof(channels.n) / sizeof(channels.n[0]); u++){
DBGPF("Cleaning up channel registry bucket %" PRIsize_t " with %" PRIsize_t " channels", u, channels.n[u]);
for(p = 0; p < channels.n[u]; p++){
DBGPF("Destroying channel %" PRIu64 " on instance %s\n", channels.entry[u][p]->ident, channels.entry[u][p]->instance->name);
//call the channel_free function if the backend supports it
if(channels.entry[u][p]->impl && channels.entry[u][p]->instance->backend->channel_free){
channels.entry[u][p]->instance->backend->channel_free(channels.entry[u][p]);
}
free(channels.entry[u][p]);
}
free(channels.entry[u]);
channels.entry[u] = NULL;
channels.n[u] = 0;
}
}
int backends_stop(){
size_t u, n;
instance** inst = NULL;
//channels before instances to support proper shutdown procedures
channels_free();
//shut down the registry
for(u = 0; u < registry.n; u++){
//fetch list of instances
if(mm_backend_instances(registry.backends[u].name, &n, &inst)){
fprintf(stderr, "Failed to fetch instance list for shutdown of backend %s\n", registry.backends[u].name);
inst = NULL;
n = 0;
}
registry.backends[u].shutdown(n, inst);
free(inst);
inst = NULL;
//free instances
for(inst = registry.instances[u]; inst && *inst; inst++){
free((*inst)->name);
(*inst)->name = NULL;
(*inst)->backend = NULL;
free(*inst);
}
free(registry.instances[u]);
registry.instances[u] = NULL;
}
free(registry.backends);
free(registry.instances);
registry.n = 0;
return 0;
}
|